

唐老狮系列教程

运动模糊效果基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

- 1. 运动模糊效果是什么
- 2. 运动模糊效果的基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果是什么

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果是什么

运动模糊效果,是一种

用于 模拟真实世界中快速移动物体产生的模糊现象 的图像处理技术

当一个物体以较高速度移动时,由于人眼或摄像机的曝光时间过长,该物体会在图像中留下模糊

的运动轨迹。这种效果游戏、动画、电影中被广泛应用,以增加视觉真实性和动感。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果的基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果的基本原理

想要在屏幕后期处理中实现运动模糊,一般有两种常用方式:

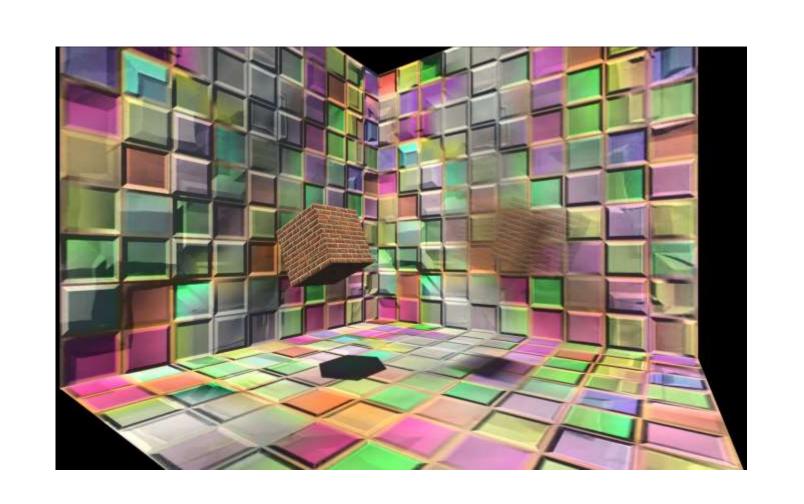

1.累积缓存:物体快速移动时存储多帧图像信息,取它们之间的加权平均值作为最后的运动模糊图像

优点: 质量高、效果好; 缺点: 计算量大, 存储开销大

2.速度缓存:物体快速移动时存储多帧运动速度信息,利用速度来决定模糊的方向和大小

优点: 性能较累积缓存好; 缺点: 效果较差, 可能产生重影和伪影

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

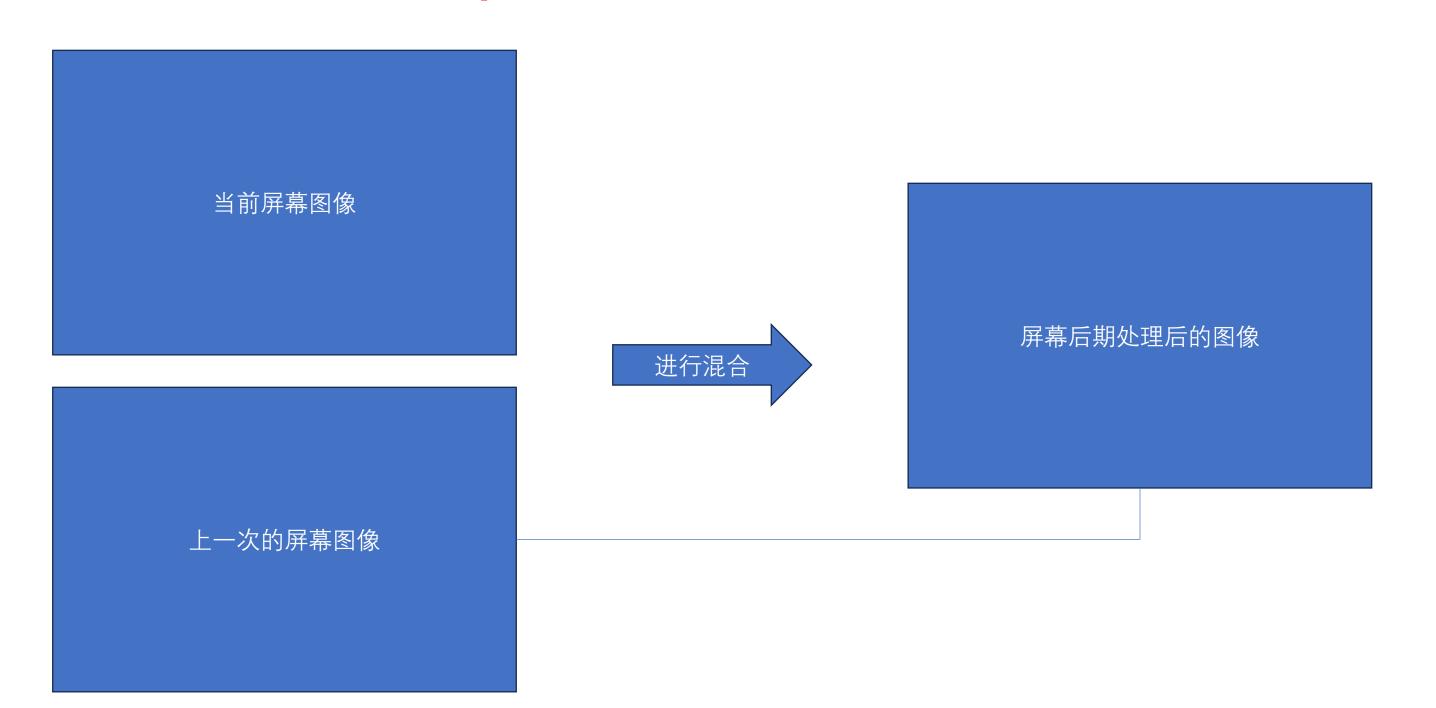


运动模糊效果的基本原理

我们将在课程中基于累积缓存来实现动态模糊效果。

但是我们**不需要像累积缓存中那样存储多张场景信息**,但是**需要保存之前的渲染结果,不断把当前的渲染图像叠加到之前的渲染图像中,从而产生一种运动轨迹的视觉效果。**相当于是基于累积缓存的优化,性能会更好,但是模糊效果可能略有欠缺,但是效果也是可以接受的。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY



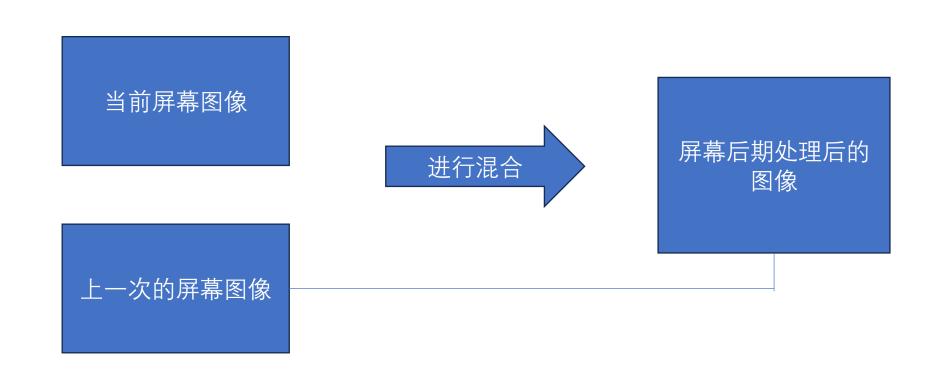
运动模糊效果的基本原理

它的基本原理是:

用一个RenderTexture记录上一次渲染的信息,然后每一次用新的屏幕图像信息和上一次的图像信息进行混合渲染,从而产生模糊效果(相当于用一张图保留了之前n次的叠加渲染结果)

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果的基本原理


在使用Graphics.Blit(源纹理,目标纹理,材质)方法时

如果目标纹理中包含内容,会直接认为目标纹理中的颜色为颜色缓冲区中的颜色

因此我们完全可以利用该方法,配合Shader代码将两张图片信息进行混合处理,从而实现运动模糊效果。

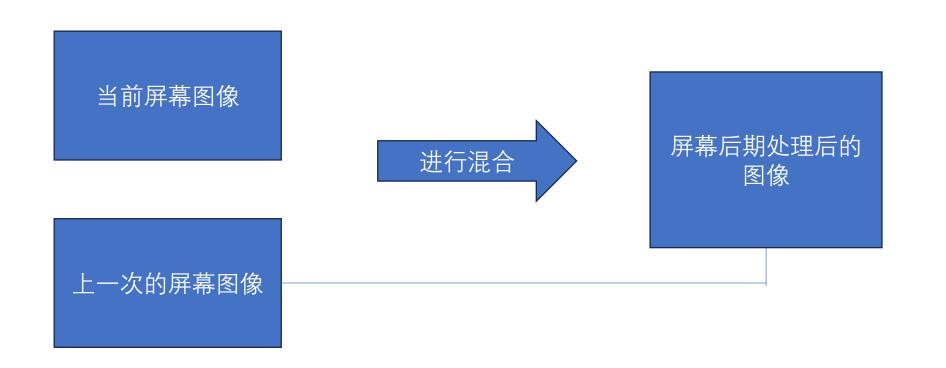
它的主要混合思路是:

- 1. RGB通道由两张图片根据模糊程度决定最终效果
- 2. A通道根据当前屏幕图像决定

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果的基本原理

利用一个模糊程度变量来控制运动模糊程度,值越大模糊程度越强;越小模糊程度越弱


利用两个Pass进行混合处理的方式:

第一个Pass: 让当前屏幕图像 和 上一次的屏幕图像 进行指定RGB通道的颜色混合

目的是利用模糊程度参数控制两张图片的混合效果,值越大上一次屏幕内容保留的越多

第二个Pass: 利用第一个Pass处理后得到的颜色在 和源纹理进行A通道的颜色混合

目的是保留源纹理透明度信息

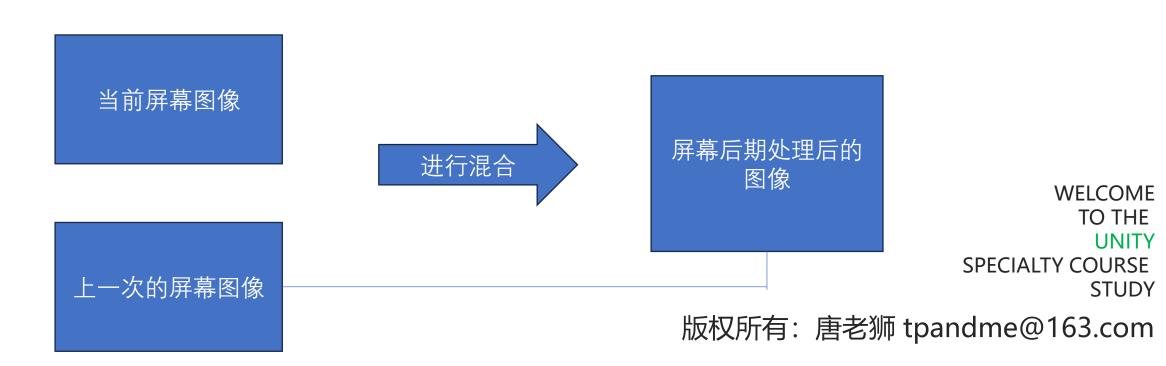
WELCOME TO THE UNITY SPECIALTY COURSE STUDY

运动模糊效果的基本原理

混合方式如何设置:

第一个Pass:

Blend SrcAlpha OneMinusSrcAlpha ((源颜色 * SrcAlpha) + (目标颜色 * (1 - SrcAlpha)))


ColorMask RGB (只改变颜色缓冲区中的RGB通道)

第二个Pass:

Blend One Zero (最终颜色 = (源颜色 * 1) + (目标颜色 * 0))

ColorMask A(只改变颜色缓冲区中的A通道)

```
fixed4 fragRGB (v2f i) : SV_Target {
    return fixed4(tex2D(_MainTex, i.uv).rgb, 模糊程度变量);
}
half4 fragA (v2f i) : SV_Target {
    return tex2D(_MainTex, i.uv);
}
```


总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

1. 运动模糊效果是什么

用于 模拟真实世界中快速移动物体产生的模糊现象 的图像处理技术

2. 运动模糊效果的基本原理

保存之前的渲染结果,不断把当前的渲染图像叠加到之前的渲染图像中通过RenderTexture来进行保存,用2个Pass来进行混合叠加

- 一个Pass混合RGB通道,由两张图片根据模糊程度决定最终混合效果
- 一个Pass混合A通道,由当前屏幕图像的A通道来决定

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

唐老狮系列教程

排您的您的年

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY